Search results

Search for "valence-change memory" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Integration of LaMnO3+δ films on platinized silicon substrates for resistive switching applications by PI-MOCVD

  • Raquel Rodriguez-Lamas,
  • Dolors Pla,
  • Odette Chaix-Pluchery,
  • Benjamin Meunier,
  • Fabrice Wilhelm,
  • Andrei Rogalev,
  • Laetitia Rapenne,
  • Xavier Mescot,
  • Quentin Rafhay,
  • Hervé Roussel,
  • Michel Boudard,
  • Carmen Jiménez and
  • Mónica Burriel

Beilstein J. Nanotechnol. 2019, 10, 389–398, doi:10.3762/bjnano.10.38

Graphical Abstract
  • -based devices fabricated using optimized growth strategies. Keywords: manganite; metal organic chemical vapour deposition (MOCVD); resistive switching; thin film; valence-change memory; Introduction Resistive switching (RS) denotes the phenomena occurring in capacitor-like heterostructures (metal
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Copper atomic-scale transistors

  • Fangqing Xie,
  • Maryna N. Kavalenka,
  • Moritz Röger,
  • Daniel Albrecht,
  • Hendrik Hölscher,
  • Jürgen Leuthold and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2017, 8, 530–538, doi:10.3762/bjnano.8.57

Graphical Abstract
  • the most promising alternative concepts. Resistive nanoelectronic devices are operated under one of the following switching mechanisms: electrostatic/electronic, electrochemical metallization, valence-change memory, thermochemical memory or phase change [1][2][3][4][5]. Resistive devices are a non
  • devices can potentially be applied as logic operation devices that can fully utilize semiconductor circuit technology. Switching mechanisms such as valence-change memory effect, thermochemical memory effect, and electrochemical metallization effect have been previously exploited for three-terminal devices
PDF
Album
Full Research Paper
Published 01 Mar 2017
Other Beilstein-Institut Open Science Activities